A fiber optic sensor is a sensor that uses optical fiber either as the sensing element ("intrinsic sensors"), or as a means of relaying signals from a remote sensor to the electronics that process the signals ("extrinsic sensors"). Fibers have many uses in remote sensing. Depending on the application, fiber may be used because of its small size, or because no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using light wavelength shift for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer and wavelength shift can be calculated using an instrument implementing optical frequency domain reflectometry.
Fiber optic sensors are also immune to electromagnetic interference, and do not conduct electricity so they can be used in places where there is high voltage electricity or flammable material such as jet fuel. Fiber optic sensors can be designed to withstand high temperatures as well.
Optical fibers can be used as sensors to measure strain,temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of intrinsic fiber optic sensors is that they can, if required, provide distributed sensing over very large distances.
Temperature can be measured by using a fiber that has evanescent loss that varies with temperature, or by analyzing the Raman scattering of the optical fiber. Electrical voltage can be sensed by nonlinear optical effects in specially-doped fiber, which alter the polarization of light as a function of voltage or electric field. Angle measurement sensors can be based on the Sagnac effect.
Special fibers like long-period fiber grating (LPG) optical fibers can be used for direction recognition . Photonics Research Group of Aston University in UK has some publications on vectorial bend sensor applications.
Optical fibers are used as hydrophones for seismic and sonar applications. Hydrophone systems with more than one hundred sensors per fiber cable have been developed. Hydrophone sensor systems are used by the oil industry as well as a few countries' navies. Both bottom-mounted hydrophone arrays and towed streamer systems are in use. The German company Sennheiser developed a laser microphone for use with optical fibers.
A fiber optic microphone and fiber-optic based headphone are useful in areas with strong electrical or magnetic fields, such as communication amongst the team of people working on a patient inside a magnetic resonance imaging (MRI) machine during MRI-guided surgery.
Optical fiber sensors for temperature and pressure have been developed for downhole measurement in oil wells. The fiber optic sensor is well suited for this environment as it functions at temperatures too high for semiconductor sensors (distributed temperature sensing).
Optical fibers can be made into interferometric sensors such as fiber optic gyroscopes, which are used in the Boeing 767 and in some car models (for navigation purposes). They are also used to make hydrogen sensors.
Fiber-optic sensors have been developed to measure co-located temperature and strain simultaneously with very high accuracy using fiber Bragg gratings.This is particularly useful when acquiring information from small or complex structures.Fiber Bragg grating sensors are also particularly well suited for remote monitoring, and they can be interrogated 250 km away from the monitoring station using an optical fiber cable.[12] Brillouin scattering effects can also be used to detect strain and temperature over large distances (20–120 kilometers)
iSweek(http://www.isweek.com/)- industry sourcing,wholesale industrial products
没有评论:
发表评论