Compared with low-cost electrochemical and metal-oxide gas sensors,
those based on optical absorption achieve high specificity, minimal
drift, fast response, and a much longer lifetime. They therefore offer
significant engineering potential for application in pollution
monitoring, environmental protection, hazardous-material detection,
early disease diagnosis, and the food industry. The absorption spectra
of gas molecules exhibit narrow lines—particularly in the IR region—due
to molecular vibrations at discrete energy levels. These narrow lines
represent the signatures of gas molecules and can therefore be used for
both their measurement and identification.
Most commercial mid-IR (2.5–10μm wavelength) gas-sensing technologies
are based on benchtop Fourier-transform IR (FTIR) spectrometers and gas
cells. These instruments are expensive and large, making them unsuitable
for mobile or distributed sensing applications. The optical
telecommunication industry has, however, developed miniaturized near-IR
(NIR, 0.8–2.0μm wavelength) optical fibers and optoelectronic devices
that are low cost and highly reliable. This has led to significant
acceleration in the development of NIR sensors. The biggest challenge
lies in the fact that most gases do not have fundamental vibration bands
in NIR regions. The absorption must therefore come from overtones of
the fundamental vibration bands, resulting in a relatively low detection
sensitivity.
We have developed ultra-sensitive NIR fiber-optic gas sensors coated
with a thin layer of metal-organic framework (MOF) materials for the
detection of carbon dioxide (CO2). MOFs are a new class of highly porous
crystalline material consisting of metal ions and bridging organic
ligands that are linked together by coordination bonds. This class of
material has been widely applied in chemical separation, gas storage,
drug delivery, sensing, and catalysis applications due to the high
surface areas that are enabled by its tunable nanostructured cavities.
We have previously shown that an MOF film embedded with plasmonic
nanoparticles enhances IR absorption at 2.7μm.7 In our NIR fiber-optic
sensors, the MOF film coats the surface of the fiber core. This enables
absorption of CO2 in the ambient environment and effectively increases
the local CO2 concentration at the surface of the optical fiber.
Interaction between the evanescent field and the gas analyte is thereby
enhanced, leading to an increase in NIR detection sensitivity using a
fiber that is only a few centimeters long.
To fabricate our NIR fiber-optic gas sensor, we grew nanoporous MOF
materials on the surface of a fiber core: see Figure (a). To enable this
process, we began by etching a 5cm region on the 1m-long single-mode
fiber (SMF). After its protective polymer coating had been removed using
a flame, the SMF was fixed onto a silicon substrate via UV epoxy. We
then used a standard buffered oxide etchant (BOE) to etch away the
cladding layer of the SMF. During the etching process, the fiber was
connected to a 1.55μm laser diode and we used an optical power meter to
monitor the optical transmission through the SMF.
When the transmitted
optical power dropped by 1.5–2dB, the etching process was halted by
removing the silicon substrate from the BOE and rinsing it with
deionized water. We then grew the MOF on the surface of the etched
region using the layer-by-layer (LBL) method.8 The SMF was first treated
with oxygen plasma to increase the hydroxyl functional groups for MOF
growth and then immersed in a 300mL ethanol solution, containing 10mM of
the metal precursor (copper acetate) for 20min. The SMF was
subsequently immersed in another 300mL ethanol solution containing 1mM
of the organic ligand benzene-1,3,5-tricarboxylate (BTC) for 40min.
Between each step, we rinsed the fiber with ethanol to remove the
unreacted precursor ions or molecules to ensure uniform growth. The
fiber was then naturally dried at room temperature for 10min. The
copper-BTC MOF thin film was grown on SMF using the 40-cycle LBL method.
The experimental setup for CO2 sensing is shown in Figure (b). A tunable
semiconductor laser diode and an amplified-spontaneous-emission light
source are used to couple light into the fiber-optic sensor by fusion
splicing another SMF with the gas sensor. The gas sensor is placed
inside a gas cell, which is connected to CO2 and argon (Ar) gases. Light
transmitted through the sensor is directly coupled to a power meter or
an optical spectrum analyzer, and the data is collected by a computer.
The gas flow rates can be tuned using mass-flow controllers (MFCs) with a
flow range of 0–20mL min−1.
We determined the detection limit of our gas sensor by measuring the
change of the transmission power as a function of CO2 concentration,
which was varied by dilution with Ar. The lowest detectable
concentration is about 20 parts per million (ppm): see Figure (a). The
enhancement factor (γ), which we calculated based on the Beer-Lambert
law, is shown in Figure (b). Evanescent field optical sensors usually
have lower γ (1) is the combined result of the evanescent-field and
MOF-concentration effects.
We have developed ultra-short NIR fiber-optic gas sensors based on
MOF-coated optical fiber for CO2 sensing. Compared with conventional
evanescent-field fiber-optic gas sensors, the sensing length is reduced
to 5cm. This is made possible due to the MOF layer, which enables the
selective concentration of CO2. Our device achieves a detection limit of
20ppm. To the best of our knowledge, this is the shortest and most
sensitive NIR fiber-optic sensor for CO2 detection at the 1.57μm
wavelength. In the future, we intend to use our ultra-sensitive NIR
fiber-optic gas sensors for a variety of potential engineering
applications, including methane-leakage detection and medical diagnosis.
iSweek(http://www.isweek.com/)- Industry sourcing & Wholesale industrial products
没有评论:
发表评论