2016年5月5日星期四

Using Microwave Sensors to Measure Moisture Levels in Mozzarella Cheese

In the food production industry, there are strict health and safety regulations in place to ensure that consumers receive a product that is of superior quality. The ramifications of not meeting these government and industry standards can be hugely detrimental to a food producer. If poor-quality food were to make it to market, it can cause illness to the consumer resulting in legal consquences for the manufacturer. On the other hand, food that does not pass quality standards can result in wasted materials, higher manufacturing costs, and ultimately a loss in revenue.

When it comes to cheese manufacturing, being able to measure the moisture and temperature of the material are critical parameters for meeting quality standards. The amount of water that is contained in cheese can greatly affect its quality, processing, and shelf life.This article will explore the benefits of relying on microwave frequencies and RF resonators to accurately measure the moisture of soft cheeses, in particular mozarella, and includes a case study that gives manufacturers real-world guidelines for setting up a microwave resonator-based sensor to measure the moisture of cheese.

Benefits of Microwave Resnoator Sensors for Cheese Production
Using a microwave sensor solution, cheese manufacturers can obtain a precise measurement data for calculating the moisture, or water content, of mozarella. By accurately measuring moisture, microwave RF sensors help manufacturers reduce the growth of bacteria, helping a company achieve the highest quality product. Microwave sensors can also be used to make other measurements, such as weight, density, and temperature, as well as identify foreign particles or substances that have come into contact with the cheese. For this article, we will concentrate exclusively on the benefits of measuring moisture, since this is the most critical measurement at hand.


There are several characteristcs about advanced microwave-based sensors that make them the ideal solution for measuring the moisture content of cheese. One benefit is that they enable manufacturers to take a precise measurement within a small area. Using the microwave resonator technique, RF sensors can detect the moisture level percentage of a product as small as 2-3 cm. The measurement field always stays inside the material compared with capacitive sensors, which use a larger measurement area and therefore often measure outside of the substance.

Microwave measurements also offer the advantage of being able to detect the moisture at both the surface and core of the product. This makes it easier to measure challenging products, for example, those that may be dried at the surface only. It can be difficult to measure those types of products with capacitive and optical measuring methods.

Microwave resonator-based sensors also meet cheese manufacturers requirements for in-line measurements, as the sensors can be installed directly on the production line. For production lines with wide conveyor belts measuring 1 meter or more, several sensors can be used in a row. Using inline sensors, manufacturers can eliminate the need to use a probe and measure one-off samples in a laboratory, which is the traditional way of performing moisture measurements. With inline sensors, manufacturers can take an immediate measurement from the production line; no preparation of samples is needed. This method is significantly faster, uniquely handling microwave frequencies of up to 65 GHz at a rate of up to 10,000 measurements per second. In addition, it is infinitely more accurate, with industry research showing that accuracy increases when a measurement is taken inline vs. laboratory samples.





没有评论:

发表评论