2016年7月1日星期五

Introduction to Fiber Optic Sensors and their Types with Applications

In the year 1960, laser light was invented and after the invention of lasers,  researchers had shown interest to study the applications of optical fiber communication systems for sensing, data communications, and many other applications. Subsequently the fiber optic communication system has become the ultimate choice for gigabits and beyond gigabits transmission of data. This type of fiber optic communication is used to transmit data, voice, telemetry and video over a long distance communication or computer networks or LANs. 

This technology uses a light wave to transmit the data over a fiber by changing electronic signals into light. Some of the excellent characteristic features of this technology include light weightness, low attenuation, smaller diameter, long distance signal transmission, transmission security, and so on.

Significantly, the telecommunication technology has changed the recent advances in fiber optic technology. The last revolution appeared as designers to combine the productive results of optoelectronic devices with fiber-optic-telecommunication devices to create fiber optic sensors. Many of the components associated with these devices are often developed for the fiber-optic-sensor applications. The ability of the fiber optic sensors has increased in the place of traditional sensor.
Fiber Optic Sensors

The fiber optic sensors also called as optical fiber sensors use optical fiber or sensing element. These sensors are used to sense some quantities like temperature, pressure, vibrations, displacements, rotations or concentration of chemical species. Fibers have so many uses in the field of remote sensing because they require no electrical power at the remote location and they have tiny size.

Fiber optic sensors are supreme for insensitive conditions, including noise, high vibration, extreme heat, wet and unstable environments. These sensors can easily fit in small areas and can be positioned correctly wherever flexible fibers are needed. The wavelength shift can be calculated using a device, optical frequency-domain reflectrometry. The time-delay of the fiber optic sensors can be decided using a device such as an optical time-domain Reflectometer.

Block Diagram Of Fiber Optic Sensor
The general block diagram of fiber-optic sensor is shown above. The block diagram consists of optical source (Light Emitting Diode, LASER, and Laser diode), optical fiber, sensing element, optical detector and end-processing devices (optical-spectrum analyzer, oscilloscope). These sensors are classified into three categories based on the operating principles, sensor location and application.




没有评论:

发表评论