2016年1月5日星期二

How to choose a Humidity Sensor?

he most important specifications to keep in mind when selecting a humidity sensor are:
• Accuracy
• Repeatability
• Interchangeability
• Long-term stability
• Ability to recover from condensation
• Resistance to chemical and physical contaminants
• Size
• Packaging
• Cost effectiveness

Additional significant long-term factors are the costs associated with sensor replacement, field and in-house calibrations, and the complexity and reliability of the signal conditioning and data acquisition (DA) circuitry. For all these considerations to make sense, the prospective user needs an understanding of the most widely used types of humidity sensors and the general trend of their expected performance. Definitions of absolute humidity, dew point, and relative humidity are provided in the sidebar, "Humidity Basics").

Capacitive Humidity Sensors
Relative Humidity. Capacitive relative humidity (RH) sensors (see Photo 1) are widely used in industrial, commercial, and weather telemetry applications.

Capacitive RH sensors are produced in a wide range of specifications, sizes, and shapes including integrated monolithic electronics. The sensors shown here are from various manufacturers.

They consist of a substrate on which a thin film of polymer or metal oxide is deposited between two conductive electrodes. The sensing surface is coated with a porous metal electrode to protect it from contamination and exposure to condensation. The substrate is typically glass, ceramic, or silicon. The incremental change in the dielectric constant of a capacitive humidity sensor is nearly directly proportional to the relative humidity of the surrounding environment. The change in capacitance is typically 0.2–0.5 pF for a 1% RH change, while the bulk capacitance is between 100 and 500 pF at 50% RH at 25°C. Capacitive sensors are characterized by low temperature coefficient, ability to function at high temperatures (up to 200°C), full recovery from condensation, and reasonable resistance to chemical vapors. The response time ranges from 30 to 60 s for a 63% RH step change.

State-of-the-art techniques for producing capacitive sensors take advantage of many of the principles used in semiconductor manufacturing to yield sensors with minimal long-term drift and hysteresis. Thin film capacitive sensors may include monolithic signal conditioning circuitry integrated onto the substrate. The most widely used signal conditioner incorporates a CMOS timer to pulse the sensor and to produce a near-linear voltage output.

A near-linear response is seen in this plot of capacitance changes vs. applied humidity at 25°C. The term "bulk capacitance" refers to the base value at 0% RH.

The typical uncertainty of capacitive sensors is ±2% RH from 5% to 95% RH with two-point calibration. Capacitive sensors are limited by the distance the sensing element can be located from the signal conditioning circuitry, due to the capacitive effect of the connecting cable with respect to the relatively small capacitance changes of the sensor. A practical limit is 10–100 M makes the response an impedance measurement. A distinct advantage of resistive RH sensors is their interchangeability, usually within ±2% RH, which allows the electronic signal conditioning circuitry to be calibrated by a resistor at a fixed RH point. This eliminates the need for humidity calibration standards, so resistive humidity sensors are generally field replaceable. The accuracy of individual resistive humidity sensors may be confirmed by testing in an RH calibration chamber or by a computer-based DA system referenced to standardized humidity-controlled environment. Nominal operating temperature of resistive sensors ranges from –40°C to 100°C.

In residential and commercial environments, the life expectancy of these sensors is >>5 yr., but exposure to chemical vapors and other contaminants such as oil mist may lead to premature failure. Another drawback of some resistive sensors is their tendency to shift values when exposed to condensation if a water-soluble coating is used. Resistive humidity sensors have significant temperature dependencies when installed in an environment with large (>10°F) temperature fluctuations. Simultaneous temperature compensation is incorporated for accuracy. The small size, low cost, interchangeability, and long-term stability make these resistive sensors suitable for use in control and display products for industrial, commercial, and residential applications.

One of the first mass-produced humidity sensors was the Dunmore type, developed by NIST in the 1940s and still in use today. It consists of a dual winding of palladium wire on a plastic cylinder that is then coated with a mixture of polyvinyl alcohol (binder) and either lithium bromide or lithium chloride. Varying the concentration of LiBr or LiCl results in very high resolution sensors that cover humidity spans of 20%–40% RH. For very low RH control function in the 1%–2% RH range, accuracies of 0.1% can be achieved. Dunmore sensors are widely used in precision air conditioning controls to maintain the environment of computer rooms and as monitors for pressurized transmission lines, antennas, and waveguides used in telecommunications.

Summary
Rapid advancements in semiconductor technology, such as thin film deposition, ion sputtering, and ceramic/silicon coatings, have made possible highly accurate humidity sensors with resistance to chemicals and physical contaminants?at economical prices. No single sensor, however, can satisfy every application. Resistive, capacitive, and thermal conductivity sensing technologies each offer distinct advantages. Resistive sensors are interchangeable, usable for remote locations, and cost effective. Capacitive sensors provide wide RH range and condensation tolerance, and, if laser trimmed, are also interchangeable. Thermal conductivity sensors perform well in corrosive environments and at high temperatures. For most applications, therefore, the environmental conditions dictate the sensor choice.

iSweek(http://www.isweek.com/)- Industry sourcing & Wholesale industrial products



没有评论:

发表评论