An engine with a bad Mass flow sensor may be hard to start or stall after starting. It may hesitate under
load, surge, idle rough or run excessively rich or lean. The engine may also
hiccup when the throttle suddenly changes position.
If you suspect a Mass flow sensor problem, scan for any fault codes. A Mass flow sensor problem should (but does not always) set a fault code. Codes that may indicate a problem with the sensor include: GM: Code 33 (too high frequency) and Code 34 (too low frequency) on engines with multiport fuel injection only, and Code 36 on 5.0L and 5.7L engines that use the Bosch hot-wire Mass flow sensor, if the burn-off cycle after shut-down fails to occur.
Of course, don’t overlook the basics, such as low engine compression, low vacuum, low fuel pressure, leaky or dirty injectors, ignition misfire, excessive backpressure (plugged converter), etc., since problems in any of these areas can produce similar driveability symptoms.
Mass flow sensors can be tested either on or off the vehicle in a variety of ways. You can use a Mass flow Sensor Tester and tachometer to check the sensor’s response. If testing on the vehicle, unplug the wiring harness connector from the sensor and connect the tester and tachometer. Start the engine and watch the readings. They should change as the throttle is opened and closed. No change would indicate a bad sensor. The same hookup can be used to test the Mass flow sensor off the vehicle. When you blow through the sensor, the readings should change if the sensor is detecting the change in air flow.Another check is to read the sensor’s voltage or frequency output on the vehicle. With Bosch hot-wire Mass flow sensors, the output voltage can be read directly with a digital voltmeter by backprobing the brown-andwhite output wire to terminal B6 on the PCM. The voltage reading should be around 2.5 volts. If out of range, or if the sensor’s voltage output fails to increase when the throttle is opened with the engine running, the sensor may be defective. Check the orange and black feed wire for 12 volts, and the black wire for a good ground. Power to the Mass flow sensor is provided through a pair of relays (one for power, one for the burn-off cleaning cycle), so check the relays too, if the Mass flow sensor appears to be dead or sluggish. If the sensor works but is slow to respond to changes in air flow, the problem may be a contaminated sensing element caused by a failure in the self-cleaning circuit or relay. With GM Delco MAF sensors, attach a digital voltmeter to the appropriate MAF sensor output terminal.
With the engine idling, the
sensor should output a steady 2.5 volts. Tap lightly on the sensor and note the
meter reading. A good sensor should show no change. If the meter reading jumps
and/or the engine momentarily misfires, the sensor is bad and needs to be
replaced. You can also check for heat-related problems by heating the sensor
with a hair dryer and repeating the test. This same test can also be done using
a meter that reads frequency. The older AC Delco MAF sensors (like a 2.8L V6)
should show a steady reading of 32 Hz at idle to about 75 Hz at 3,500 rpm. The
later model units (like those on a 3800 V6 with the Hitachi MAF sensor) should
read about 2.9 kHz at idle and 5.0 kHz at 3,500 rpm. If tapping on the MAF sensor
produces a sudden change in the frequency signal, it’s time for a new sensor.
On GM hot-film MAFs, you can also use a scan tool to read the sensor’s output in “grams per second” (gps), which corresponds to frequency. The reading should go from 4 to 8 gps at idle up to 100 to 240 gps at wide-open throttle. Like throttle position sensors, there should be smooth linear transition in sensor output as engine speed and load change. If the readings jump all over the place, the computer won’t be able to deliver the right air/fuel mixture and driveability and emissions will suffer. So you should also check the ensor’soutput at various speeds to see that its output hanges appropriately. Another way to observe the sensor’s output is to look at its waveform on an oscilloscope. The waveform should be square and show a gradual increase in frequency as engine speed and load increase. Any skips or sudden jumps or excessive noise in the pattern would tell you the sensor needs to be replaced. Yet another way to check the MAF sensor is to see what effect it has on injector timing. Using an oscilloscope or multimeter that reads milliseconds, connect the test probe to any injector ground terminal (one injector terminal is the supply voltage and the other is the ground circuit to the computer that controls injector timing). Then look at the duration of the injector pulses at idle (or while cranking the engine if the engine won’t
start). Injector timing varies depending on the application, but if the mass air flow sensor is not producing a signal, injector timing will be about four times longer than normal (possibly making the fuel mixture too rich to start). You can also use millisecond readings to confirm fuel enrichment when the throttle is opened during acceleration, fuel leaning during light load cruising and injector shut-down during deceleration. Under light load cruise, for example, you should see about 2.5 to 2.8 Ms duration.
On GM hot-film MAFs, you can also use a scan tool to read the sensor’s output in “grams per second” (gps), which corresponds to frequency. The reading should go from 4 to 8 gps at idle up to 100 to 240 gps at wide-open throttle. Like throttle position sensors, there should be smooth linear transition in sensor output as engine speed and load change. If the readings jump all over the place, the computer won’t be able to deliver the right air/fuel mixture and driveability and emissions will suffer. So you should also check the ensor’soutput at various speeds to see that its output hanges appropriately. Another way to observe the sensor’s output is to look at its waveform on an oscilloscope. The waveform should be square and show a gradual increase in frequency as engine speed and load increase. Any skips or sudden jumps or excessive noise in the pattern would tell you the sensor needs to be replaced. Yet another way to check the MAF sensor is to see what effect it has on injector timing. Using an oscilloscope or multimeter that reads milliseconds, connect the test probe to any injector ground terminal (one injector terminal is the supply voltage and the other is the ground circuit to the computer that controls injector timing). Then look at the duration of the injector pulses at idle (or while cranking the engine if the engine won’t
start). Injector timing varies depending on the application, but if the mass air flow sensor is not producing a signal, injector timing will be about four times longer than normal (possibly making the fuel mixture too rich to start). You can also use millisecond readings to confirm fuel enrichment when the throttle is opened during acceleration, fuel leaning during light load cruising and injector shut-down during deceleration. Under light load cruise, for example, you should see about 2.5 to 2.8 Ms duration.
没有评论:
发表评论